

Date Planned://_ Actual Date of Attempt://_				Dail	Daily Tutorial Sheet - 4 JEE Advanced (Archive)			Expected Duration : 90 Min Exact Duration :		
				JEE A						
1 6.	Explai	in the differenc	e in the na	ture of bondi	ng in LiF a	nd LiI.			(1996)	
1 7.	Among the following species, identify the isostructural pairs. NF $_3$, NO $_3^-$, BF $_3$, H $_3$ O $^+$, N $_3$ H								(1996)	
	(A)	$\left[\mathrm{NF}_{3},\mathrm{NO}_{3}^{-}\right]\mathrm{and}\left[\mathrm{BF}_{3},\mathrm{H}_{3}\mathrm{O}^{+}\right] \tag{B} \qquad \left[\mathrm{NF}_{3},\mathrm{N}_{3}\mathrm{H}\right]\mathrm{and}\left[\mathrm{NO}_{3}^{-},\mathrm{BF}_{3}\right]$								
	(C)	$\left[\mathrm{NF_3},\mathrm{H_3O}^+\right]$	and $\left[NO_{3}^{-},\right]$	$BF_3\Big]$	(D)	$\left[\mathrm{NF_3},\mathrm{H_3O}^+\right]$	and $[N_3H]$	$[BF_3]$		
18.	Which one of the following molecules is planar?								(1996)	
	(A)	NF_3	(B)	NCl_3	(C)	PH_3	(D)	BF_3		
19.	The number and type of bonds between two carbon atoms in $\mathrm{C}_2^{}$ are:								(1996)	
	(A) one sigma (σ) and one pi (π) bonds (B) two pi (π) bonds									
	(C) one sigma (σ) and one half pi (π) bonds (D) one sigma (σ) bond									
50.	When N_2 goes to N_2^+ , the $N-N$ bond distance, and when O_2 goes to O_2^+ the								O-O bond	
	distan	ice	·						(1996)	
51.	Amon	g N_2O , SO_2 , I_3^+	and I_3^- , the	e linear specie	s are	and	·		(1997)	
52.	Which one of the following compound has sp^2 –hybridization?								(1997)	
	(A)	CO_2	(B)	SO_2	(C)	${ m N_2O}$	(D)	CO		
53 .	Among KO_2 , AlO_2^- , BaO_2 and NO_2^+ , unpaired electron is present in:								(1997)	
	(A)	NO ₂ and Ba	O_2		(B)	KO ₂ and Al	O_{2}^{-}			
	(C)	only KO_2			(D)	only ${\rm BaO}_2$				
54.	The cyanide ion CN^- and N_2 are isoelectronic, but in contrast to CN^- , N_2 is chemically inert because of:									
	(A)	low bond en	ergy						(1997)	
	(B)	absence of b	ond polarit	y						
	(C)	unsymmetri	cal electror	n distribution						

55. Which contains both polar and non-polar bonds?

(1997)

(A) NH₄Cl

(D)

- (B) HCN
- (C) H_2O_2
- **(D)** CH₄
- **56. Statement I:** LiCl is predominantly a covalent compound.

(1998)

Statement II: Electonegativity difference between Li and Cl is too small.

presence of more number of electron in bonding orbitals

- (A) Both Statement I and Statement II are correct; Statement II is the correct explanation of Statement I
- (B) Both Statement I and Statement II are correct; Statement II is not the correct explanation of Statement I
- (C) Statement I is correct; Statement II is the incorrect
- **(D)** Statement I is incorrect; Statement II is the correct

57. Statement I: The electronic structure of O_3 is:

(1998)

Statement II: structure is not allowed because octet around O cannot be expanded.

- (A) Both Statement I and Statement II are correct; Statement II is the correct explanation of Statement I
- (B) Both Statement I and Statement II are correct; Statement II is not the correct explanation of Statement I
- (C) Statement I is correct; Statement II is the incorrect
- **(D)** Statement I is incorrect; Statement II is the correct
- 58. Interpret the non-linear shape of H_2S molecule and non-planar shape of PCl_3 using valence shell electron pair repulsion (VSEPR) theory. (Atomic number: H = I, P = 15, S = 16, Cl = 17) (1998)
- **59.** Using the VSEPR theory, identify the type of hybridisation and draw the structure of OF_2 . What are the oxidation states of O and F? (1998)
- **60.** The geometry and the type of hybrid orbital present about the central atom in BF_3 is: (1998)

116

(A) linear, sp

(B) trigonal planar, sp^2

(C) tetrahedral, sp³

(D) pyramidal, sp^3